
www.manaraa.com

FXplorer: Exploration of Computed Software Behavior

A New Approach to Understanding and Verification

Luanne Burns

Timothy Daly
Software Engineering Institute

Carnegie Mellon University

lburns@cert.org

daly@cert.org

Abstract

The craft of software understanding and verification

can benefit from technologies that enable evolution

toward a true engineering discipline. In current prac-

tice, software developers lack practical means to de-

termine the full functional behavior of programs under

development, and even the most thorough testing can

provide only partial knowledge of behaviors. Thus, an

effective technology for revealing software behaviors

could have a positive impact on software understand-

ing. This paper describes the emerging technology of

function extraction (FX) for computing the functional

behavior of programs and how the knowledge of pro-

gram behavior can be used in user-directed program

exploration for understanding and verification. We

explore how the use of FX technologies can transform

methods for functional verification of software. Sev-

eral examples are presented illustrating the FXplorer

interface and its use in exploring the behavior of pro-

grams, a capability that, without function extraction

technology, has not been possible until now.

1. Transforming Software Understanding

FXplorer is an example of a value-added software

understanding application that capitalizes on the avail-

ability of function extraction technology to provide

capabilities current tools cannot match.

The objective of function extraction technology is

to compute the behavior of software to the maximum

extent possible with mathematical precision. Com-

puted behavior defines what a program does in all

possible circumstances of use and can be described as

the “as-built” specification of the code. Routine avail-

ability of computed software behavior permits the de-

velopment of many value-added applications with ca-

pabilities beyond what is possible today. For example,

FXplorer provides a unique and different view into

program behavior and how that behavior accumulates

as a program executes. This view provides new ap-

proaches and strategies in software understanding and

verification. In section 2, we discuss FX in the context

of cyber security. Section 3 discusses the concepts of

Function Extraction and the function-theoretic view of

software as the mathematical foundation for the com-

putation of behavior. Section 4 describes the FX sys-

tem that implements such a system. Section 5 illu-

strates the of concepts underlying FXplorer as a value-

added software application made possible through the

use of function extraction technology and section 6

describes the FXplorer interface. Section 7 gives a

brief discussion of FXplorer’s underlying algorithm

for computing all pathways through a program using

its computed behavior. Finally, section 8 discusses

FXplorer impact and future direction.

2. Background and Cyber Security

 Gallagher and Lyle [2,7] use the idea of slicing a

program along a single variable in order to isolate the

effect of the variable on the rest of the program. Inte-

ractions might arise due to side-effects that are not

directly related to the variable, such as changing the

value of one of the processor flags or side-effecting

aliased memory locations. Since FX computes the

"ground truth" of the processor, it should be possible

to track the result of these side-effects. We have not

considered tracing a single user visible variable but

this might be a very valuable addition to FX in a soft-

ware maintenance role.

 Walton et al. [7,10] ask, "What can be computed

with respect to security attributes?" The 9 attributes

identified were (1) a trusted mechanism, (2) trusted

data transmission, (3) authentication, (4) authorization,

(5) non-repudiation, (6) privacy, (7) confidentiality,

(8) integrity, and (9) availability. These attributes

would be specified in a behavior catalog giving, for

example, the required authentication behavior of a

login program. The program would be restricted to use

www.manaraa.com

only trusted data sources and be required to acquire

the needed privilege level only during certain opera-

tions.

 Using FX with a behavior catalog which specifies

the program behavior, the FXplorer program can be

used to calculate the current program behavior. This

can then be compared with the required security beha-

vior which has been specified in terms of data and

transformations on data.

3. Function Extraction Concepts

CERT STAR*Lab of the Software Engineering In-

stitute at Carnegie Mellon University is conducting

research and development in the emerging technology

of function extraction [1,3,4,5,8,9]. The objective is to

compute the behavior of software to the maximum

extent possible with mathematical precision. FX

presents an opportunity to reduce dependencies on

slow and costly testing processes to assess software

functionality by moving to fast and inexpensive com-

putation of functionality at machine speeds.

The goal of behavior computation is to compose

and record the semantic information in programs in

order to augment human capabilities for analysis, de-

sign, and verification. In the current paper we limit the

discussion of function extraction to the domain of se-

quential logic, postponing concurrent and recursive

topics. Computing the behavior of programs is a diffi-

cult problem, and our intent is to say the first words on

the subject, not the last words.

The well-known function-theoretic view of soft-

ware provides mathematical foundations for computa-

tion of behavior [4]. In this perspective, programs are

treated as rules for mathematical functions or relations,

that is, mappings from inputs (domains) to outputs

(ranges), regardless of subject matter addressed or

implementation languages employed.

The key to the function-theoretic approach is the

recognition that, while programs may contain far too

many execution paths for humans to understand or

computers to analyze, every program (and thus every

system of programs) can be described as a composition

of a finite number of control structures, each of which

implements a mathematical function or relation in the

transformation of its inputs into outputs. In particular,

the sequential logic of programs can be expressed as a

finite number of single-entry, single-exit control struc-

tures: sequence (composition), alternation (ifthenelse),

and iteration (whiledo), with variants and extensions

permitted but not necessary. The behavior of every

control structure in a program can be extracted and

composed with others in a stepwise process based on

an algebra of functions that traverses the control struc-

ture hierarchy. Termination of the function extraction

and composition processes are assured by the finite

number of control structures present in a program [5].

 The first step in behavior extraction is to transform

any spaghetti logic in the input program into structured

form, to create a hierarchy of nested and sequenced

control structures. The behavior of leaf node control

structures is then computed with net effects propagated

to the next level while local details of processing and

data are left behind. These computations reveal new

leaf nodes and the process repeats until all behavior

has been computed.

Behavior computation for sequence and alternation

structures involves composition and case analysis.

Because no comprehensive theory for loop behavior

computation can exist, mathematical foundations and

engineering implementations short of a general theory

but sufficient for practical use has been developed for

use in FX [8].

The general form of the expressions produced by

function extraction is a set of conditional concurrent

assignments (CCA) organized into behavior databases

that define program behavior in all circumstances of

use. The CCAs are disjoint and thus partition behavior

on the input domain of a program. The behavior data-

bases define behavior in non-procedural form and

represent the as-built specification of a program. Each

CCA is composed of a predicate on the input domain,

which, if true, results in simultaneous assignment of all

right-hand side domain values in the concurrent as-

signments to their left-hand side range variables. The

left side of Figure 1 shows a program that swaps two

variables, x and y; the right side shows the behavior of

the program as a conditional concurrent assignments.

Note that there are many algorithm alternatives that

one might choose for doing the swap but all would

result in the same extraction.

Behavior databases, thus, are the central repository

for the actual behaviors contained in a software sys-

tem. The behavior databases can be queried, for ex-

ample, for particular behavior cases of interest, or to

determine if any cases satisfy, or violate, specified

conditions or constraints. Behavior databases have

many uses ranging from basic human understanding of

code, to program correctness verification, to analysis

of security and other attributes, to component compo-

sition, and so on [3].

The first application of FX technology is to pro-

grams written in, or compiled into, Intel assembly lan-

guage to support analysts in malicious code detection

and understanding of malware behaviors. Sample out-

puts from the evolving FX system are employed later

in the paper to illustrate the role of behavior computa-

www.manaraa.com

tion as a means to understanding and verifying pro-

grams.

 Figure 1: Swap program and extraction

4. Function Extraction Examples

 In the example shown in Figure 2, the assembler

source code for a short program is shown. It contains

statements such as push and pop, add, subtract, and

jump. The code contains spaghetti logic with various

jumps throughout. A code analyst would need to ma-

nually trace through the statements to determine the

program behavior. Using the FX system, however, the

analyst is able to determine the behavior of this se-

quence with the push of a button.

 1 //begin sequence

 2 top:
 3 : // sequence function

 4 : push eax
 5 : push ebx
 6 : add esp, 0x00000004
 7 : (jmp 0x0000001E)
 8 : pop eax
 9 : (jmp $-0x14)
 10 : sub eax, ebx
 11 : add ebx, eax
 12 : push ecx
 13 : sub ecx, ecx
 14 : sub ecx, eax
 15 : add ecx, ebx
 16 : sub eax, eax
 17 : add eax, ecx
 18 : clc
 19 : pop ecx
 20 : (jmp $-0x12)
 21 : (ret)
 22 : label = exit

Figure 2: Assembler source

 Figure 3 shows the FX Code/Behavior display.

The left side of the split pane shows the original as-

sembly language after transformation by the system

into structured form. It is revealed to be a simple se-

quence structure. The jumps are shown in parentheses

for traceability but they have been untangled and re-

moved from the sequence. The right side of the split

pane shows the automatically generated behavior data-

base for the code. The equations are conditional con-

current assignments; the left hand sides represent final

values at program exit while the right hand sides are

initial values at program entry; all equations are as-

signed concurrently, not sequentially.

 Note here that EAX register has been assigned the

initial value of the EBX register and EBX has been

assigned the initial value of the EAX register. This

code thus performs a swap of the two registers. This

program involves only a simple sequence control

structure. The FX system computes the functional

behavior of every control structure in a program, the-

reby populating its behavior database with comprehen-

sive information about its behavior from low level

structures up to the entire program.

5. Behavior Exploration with FX Technology

The Code/Behavior display in FX allows the user

to see the resulting behavior database for the whole

program, as well as the behavior for each individual

control structure or statement. These behaviors are

defined in terms of conditional concurrent assign-

ments. FXplorer allows the user to see behavior across

statements, that is, the composition, or net effect, of

accumulating behavior from one statement or structure

to the next. This greatly assists a programmer in veri-

fying the execution of his programs. In essence,

FXplorer allows user-controlled behavior exploration.

The knowledge of program behavior gives new explo-

ratory power to programmers in the debugging phase

of their development.

The three FXplorer capabilities are called:

• BehaviorCase or Path Quest

• BehaviorPath or Connect the Dots

• BehaviorHere or Come Here

By default, FX displays the whole program behavior

database. Using this display, the user might decide

that one or more of the behaviors looks suspicious or

erroneous. He might want to know which code state-

ments and their accumulating behaviors contribute to

the case in question.

 BehaviorCase, FXplorer’s “PathQuest” function,

starts with a user-selected case in the behavior data-

base of a program. It determines and displays the

compositions of all the accumulating behavior along

all the code paths that produce that case. All other

www.manaraa.com

 Figure 3: FX Code/Behavior View

code and behavior is eliminated. Thus, the program-

mer can find out what part of the original program is

responsible for a given result.

 BehaviorPath, or “Connect the Dots,” starts with a

user-selected code path through the program. It de-

termines and displays all the compositions of the ac-

cumulating behavior along that path. Thus, the pro-

grammer can examine a particular path through the

program to see the accumulating and final behavior it

causes.

BehaviorHere, or FXplorer’s “Come Here” func-

tion, starts with a user-selected statement in the pro-

gram. It determines and displays the compositions of

all the accumulating behaviors along all possible code

paths to that statement. Thus, the programmer can find

a particular point in a program and see all the paths

and accumulating behaviors leading to that point.

 These three functions provide a unique way of un-

derstanding a program. It allows direct answers to

common programmer questions like: "Where does this

result come from?" (BehaviorCase), "What happens if

this path is executed?" (BehaviorPath), and "How does

this program get here?" (BehaviorHere). The ability to

answer these questions in full without doing a line-by-

line analysis greatly improves the programmer’s ability

to understand program behavior, to verify that the re-

sults are correct, and to validate the results against a

specification.

6. Exploring the User Interface

 Glance ahead to Figure 5 for a moment to see the

basic structure of the FXplorer interface; FXplorer

provides a tabular view of program behavior where the

rows are program statements and the columns are reg-

isters, flags, and memory values. FX also displays

external items such as file system values but those will

not be discussed in this context. Think of the tabular

view as a checkbook register. Each statement is an

entry in the register; the dark shaded lines labeled “af-

ter composition” are the “balance”, if you will, result-

ing after each statement. The first two rows of this

table represent the behavior database, or all behaviors,

for the program as a whole.

Now let’s look at the accumulation of behavior.

For statement 1, note that 1 is added to the value of

EAX. The darker line below statement 1 shows the

behavior afterwards.

 Statement 2 then adds 20 to EBX and the following

line shows the accumulated behavior after both state-

ments 1 and 2

Finally, Statement 3 adds 6 to EAX and the follow-

ing composition line shows the accumulated behavior

after statements 1, 2, and 3.

www.manaraa.com

The tabular view allows the user to resize and

move columns as desired. Resizing is done by drag-

ging the title area of the column header. Moving a

column is done by simply dragging the column to a

new location in the table. This allows the user to place

columns of interest in proximity to each other. If the

content of a cell in the table is too long to be displayed

without increasing the column width to an unreasona-

ble size, the cell can be clicked on and the contents

will be displayed in the top area of the table.

Using this example, let’s suppose a user starts by

viewing the whole program behavior database com-

puted by FX as shown in Figure 4 and finds Case 1 to

be of particular interest; that is, when EAX has been

incremented by 7 and EBX by 25.

 Using FXplorer, when the user right clicks any-

where on the row with that case, a drop down menu is

displayed showing all pathways through the code that

will result in this behavior. The sequence of statement

numbers is displayed on the menu. In this case, there

is only one pathway that results in this behavior. This

is illustrated in Figure 4.

 By clicking on the path dropdown menu, FXplor-

er“Path Quest” displays the statement sequence and

the composition of accumulated behavior that produc-

es the behavior defined in the selected case. The ac-

cumulated behavior sequence is illustrated in Figure 5.

 Sometimes, however, a user might like to start ex-

ploration from a point other than the behavior data-

base. Using “Come Here” in FXplorer allows a user

to explore the program from the statement level.

 For example, in Figure 6, clicking on statement 6

shows the accumulated behavior to that point in the

program, namely that EAX is incremented by 10 and

EBX by 20. In this case, only one path reaches state-

ment 6. Contrast this with the result of a “Come Here”

on statement 8, in Figure 7, where EAX is increment

by 7 and EBX by 25.
 While “Come Here” allows a user to explore beha-

vior to a given statement and “Path Quest” allows a

user to explore starting from the behavior database,

“Connect the Dots” gives a user control of exploration

along a path of his choosing. To activate path seletion,

the user selects the “Path Selection” checkbox at the

top of the tabular view. A new column appears with

radio buttons for every Then, Else, and Endif, as

shown in Figure 8. By default the Endif options are

selected. From there the user can select the desired

 Figure 4: PathQuest Drop-down menu showing statement sequence

www.manaraa.com

Figure 5: Highlighted Accumulated Behavior Sequence

Figure 6: Come-here on statement 6

www.manaraa.com

Figure 7: Come-here on statement 8

pathway through the program. Now, selecting state-

ment in column 1 will show the result along the speci-

fied “Connect the Dots” path up to the selected state-

ment. Clicking the Compose along selected path but-

ton at the top will compose the accumulating behavior

using the connected path.

 Figure 9 shows a more substantial program example

using FXplorer. Imagine a program in an embedded

avionics system that sets register EAX to the value of

an angle for use in a tangent computation by the in-

voking program. It is important that the angle not be

90 degrees, since the tangent of 90 is infinite. This

example is intentionally programmed in an obscure

manner to simulate the difficulty of understanding a

much larger program.

Note that the computed behavior shows three cases

that set EAX to 90, 96, and 88 degrees, respectively.

The 90-degree case is of immediate interest because of

the problem it creates for the tangent computation.

Nowhere in the initial code is it apparent that is EAX

explicitly set to 90, or to any other value for that mat-

ter (Figure 10 contains source listing).

If the user wanted to explore the pathway that re-

sults in this behavior, he can right click on the row in

the behavior database showing the behavior of interest,

that is, the 90 degree case, and see the resulting se-

quence of statement numbers in the path. Selecting the

sequence will then display the composition of accumu-

lating behavior along that path. Figure 11 shows the

resulting accumulated behavior. Note that we can now

see exactly the point at which EAX becomes 90, that

is, at statement 47.

 In looking at these examples, it is important to note

that no current software engineering tool can provide

these capabilities because no current tool has com-

puted behavior available to it.

FXplorer provides powerful understanding and de-

bugging information for software development, acqui-

sition, testing, and verification. But Fxplorer is only

the first of an extensive suite of value-added applica-

tions that can be built around calculated software be-

havior.

The next section briefly discusses the algorithm for

calculating all the pathways through a given program.

 Figure 8: Connect-the-Dots User-controlled exploration

www.manaraa.com

 Figure 9: FXplorer on Aviation Program Extraction

 Figure 10: Aviation Structured Source Code

www.manaraa.com

 Figure 11: Accumulated Behavior

7. FXplorer All Paths Algorithm

 We can consider the various blocks of code as

black boxes for the purpose of finding all the

possible paths through the code. The only case

of interest for this algorithm involves handling

IF statements. Thus, for a simple sequence of code:

GIVEN: (a b c)

(a b c)

When there is an IF statement we need to return

the code sequence for the true case and the code

sequence for the false case:

GIVEN: (a b c (if d e))

(a b c d)

(a b c e)

The IF statement can occur anywhere, including the

first statement of the code sequence:

GIVEN: ((if a b) c)

(a c)

(b c)

It can even be the only statement in the code:

GIVEN: ((if a b))

(a)

(b)

Or, in general, the IF statements can be nested

within other if statements:

GIVEN: (a b (if d e) (if (if i j) (if m n)) q)

(a b d i q)

(a b d j q)

(a b d m q)

(a b d n q)

(a b e i q)

(a b e j q)

(a b e m q)

(a b e n q)

So we need a recursive algorithm that walks the code

blocks looking for IF statements. When one is found

we construct two sequences, one sequence containing

the TRUE case and one sequence containing the

FALSE case. Within each case we need to recursively

search for further IF statements.

www.manaraa.com

8. Impact and Direction

 FX gives software developers a practical means to

determine the full functional behavior of programs.

FXplorer adds three radically new abilities built on the

FX knowledge of program behavior.

BehaviorCase or Path Quest answers the question

“What parts of the program are responsible for this

part of the final program behavior?”

BehaviorPath or Connect the Dots answers the ques-

tion “What is the result of following this path?”

BehaviorHere or Come Here answers the question

“What parts of the program are involved in reaching

this point?”

 Since FX covers all of the behavior of a program we

need not worry that some special case has been over-

looked. FXplorer is an example of a new generation

of software engineering automation that can capitalize

on computed behavior to amplify human capabilities

for program understanding and verification against

specifications. As an emerging discipline, FX tech-

nology holds promise for engineering correct pro-

grams, and FXplorer provides a powerful illustration

of how computed behavior can be leveraged to create

new engineering capabilities.

9. References

[1]Collins, R., Walton, G., Hevner, A., and Linger, R. The

CERT Function Extraction Experiment: Quantifying FX

Impact on Software Comprehension and Verification,

Technical Note CMU/SEI-2005-TN-047, Software En-

gineering Institute, Carnegie Mellon University, Pitts-

burgh, PA, 2005.

[2]Gallagher, J.R. Lyle, Using Program Slicing in Software

Maintenance, IEEE Transactions on Software Engineer-

ing, Vol. 17, No. 8, pp. 751-761, Aug. 1991

[3]Hevner, A., Linger, R., Collins, R., Pleszkoch, M., Pro-

well, S., and Walton, G. The Impact of Function Extrac-

tion Technology on Next-Generation Software Engineer-

ing, Technical Report CMU/SEI-2005-TR-015, Soft-

ware Engineering Institute, Carnegie Mellon University,

July 2005.

[4]Linger, R., Mills H., and Witt, B., Structured Program-

ming: Theory and Practice, Addison-Wesley, Inc., 1979.

[5]Linger, R. and Pleszkoch, M. “Improving Network Sys-

tem Security with Function Extraction Technology for

Automated Calculation of Program Behavior,” Proceed-

ings of the 37th Annual Hawaii International Confe-

rence on System Science (HICSS35), Hawaii, IEEE

Computer Society Press, Los Alamitos, CA, January

2004.

[6]Linger, R., Pleszkoch, M., Burns, L., Hevner, A., and

Walton, G., “Next-Generation Software Engineering:

Function Extraction for Computation of Software Beha-

vior,” Proceedings of the 40th Annual Hawaii Interna-

tional Conference on System Sciences (HICSS40), Ha-

waii, IEEE Computer Society Press, Los Alamitos, CA,

January 2007.

[7]Lyle, J.R., Gallagher, K.B., “A program decomposition

scheme with applications to software modification and

testing,” Proceedings of the 22th Annual Hawaii Interna-

tional Conference on System Sciences (HICSS22), Ha-

waii, IEEE Computer Society Press, Los Alamitos, CA,

January 1989.

[8]Mili, A., Daly, T., Pleszkoch, M., and

 Prowell, S., “Next-Generation Software Engineering: A

 Semantic Recognizer Infrastructure for Computing

 Loop Behavior,” Proceedings of Hawaii International

 Conference on System Sciences (HICSS41), Hawaii,

 IEEE Computer Society Press, Los Alamitos, CA, 2007.

[9]Pleszkoch, M., Hausler, P., Hevner, A., and Linger, R.

“Function-Theoretic Principles of Program Understand-

ing,” Proceedings of the 23rd Annual Hawaii Interna-

tional Conference on System Science (HICSS23), Ha-

waii, IEEE Computer Society Press, Los Alamitos, CA,

January 1990.

[10]Walton, G., Longstaff, T, and Linger, R., Technology

Foundations for Computational Evaluation of Security

Attributes, Technical Report CMU/SEI-2006-TR-021,

Software Engineering Institute, Carnegie Mellon Uni-

versity, December 2006.

