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Abstract 

The craft of software understanding and verification 

can benefit from technologies that enable evolution 

toward a true engineering discipline. In current prac-

tice, software developers lack practical means to de-

termine the full functional behavior of programs under 

development, and even the most thorough testing can 

provide only partial knowledge of behaviors. Thus, an 

effective technology for revealing software behaviors 

could have a positive impact on software understand-

ing. This paper describes the emerging technology of 

function extraction (FX) for computing the functional 

behavior of programs and how the knowledge of pro-

gram behavior can be used in user-directed program 

exploration for understanding and verification. We 

explore how the use of FX technologies can transform 

methods for functional verification of software.  Sev-

eral examples are presented illustrating the FXplorer 

interface and its use in exploring the behavior of pro-

grams, a capability that, without function extraction 

technology, has not been possible until now. 

1.  Transforming Software Understanding 

FXplorer is an example of a value-added software 

understanding application that capitalizes on the avail-

ability of function extraction technology to provide 

capabilities current tools cannot match. 

The objective of function extraction technology is 

to compute the behavior of software to the maximum 

extent possible with mathematical precision. Com-

puted behavior defines what a program does in all 

possible circumstances of use and can be described as 

the “as-built” specification of the code. Routine avail-

ability of computed software behavior permits the de-

velopment of many value-added applications with ca-

pabilities beyond what is possible today.  For example, 

FXplorer provides a unique and different view into 

program behavior and how that behavior accumulates 

as a program executes. This view provides new ap-

proaches and strategies in software understanding and 

verification.  In section 2, we discuss FX in the context 

of cyber security.  Section 3 discusses the concepts of 

Function Extraction and the function-theoretic view of 

software as the mathematical foundation for the com-

putation of behavior.  Section 4 describes the FX sys-

tem that implements such a system.  Section 5 illu-

strates the of concepts underlying FXplorer as a value-

added software application made possible through the 

use of function extraction technology and section 6 

describes the FXplorer interface.  Section 7 gives a 

brief discussion of FXplorer’s underlying algorithm 

for computing all pathways through a program using 

its computed behavior.  Finally, section 8 discusses 

FXplorer impact and future direction. 

 

2.  Background and Cyber Security 

 
    Gallagher and Lyle [2,7] use the idea of slicing a 

program along a single variable in order to isolate the 

effect of the variable on the rest of the program. Inte-

ractions might arise due to side-effects that are not 

directly related to the variable, such as changing the 

value of one of the processor flags or side-effecting 

aliased memory locations. Since FX computes the 

"ground  truth" of the processor, it should be possible 

to track the result of these  side-effects. We have not 

considered tracing a single user visible variable but 

this might be a very valuable addition to FX in a soft-

ware maintenance role. 

    Walton et al. [7,10] ask, "What can be computed 

with respect to security attributes?" The 9 attributes 

identified were (1) a trusted mechanism, (2) trusted 

data transmission, (3) authentication, (4) authorization, 

(5) non-repudiation, (6) privacy, (7) confidentiality, 

(8) integrity, and (9) availability. These attributes 

would be specified in a behavior catalog giving, for 

example, the required authentication behavior of a 

login program. The program would be restricted to use 
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only trusted data sources and be required to acquire 

the needed privilege level only during certain opera-

tions.  

     Using FX with a behavior catalog which specifies 

the program behavior, the FXplorer program can be 

used to calculate the current program behavior. This 

can then  be compared with the required security beha-

vior which has been specified in terms of data and 

transformations on data. 

3.  Function Extraction Concepts 

CERT STAR*Lab of the Software Engineering In-

stitute at Carnegie Mellon University is conducting 

research and development in the emerging technology 

of function extraction [1,3,4,5,8,9]. The objective is to 

compute the behavior of software to the maximum 

extent possible with mathematical precision. FX 

presents an opportunity to reduce dependencies on 

slow and costly testing processes to assess software 

functionality by moving to fast and inexpensive com-

putation of functionality at machine speeds.  

The goal of behavior computation is to compose 

and record the semantic information in programs in 

order to augment human capabilities for analysis, de-

sign, and verification. In the current paper we limit the 

discussion of function extraction to the domain of se-

quential logic, postponing concurrent and recursive 

topics. Computing the behavior of programs is a diffi-

cult problem, and our intent is to say the first words on 

the subject, not the last words. 

The well-known function-theoretic view of soft-

ware provides mathematical foundations for computa-

tion of behavior [4]. In this perspective, programs are 

treated as rules for mathematical functions or relations, 

that is, mappings from inputs (domains) to outputs 

(ranges), regardless of subject matter addressed or 

implementation languages employed.  

The key to the function-theoretic approach is the 

recognition that, while programs may contain far too 

many execution paths for humans to understand or 

computers to analyze, every program (and thus every 

system of programs) can be described as a composition 

of a finite number of control structures, each of which 

implements a mathematical function or relation in the 

transformation of its inputs into outputs. In particular, 

the sequential logic of programs can be expressed as a 

finite number of single-entry, single-exit control struc-

tures: sequence (composition), alternation (ifthenelse), 

and iteration (whiledo), with variants and extensions 

permitted but not necessary. The behavior of every 

control structure in a program can be extracted and 

composed with others in a stepwise process based on 

an algebra of functions that traverses the control struc-

ture hierarchy. Termination of the function extraction 

and composition processes are assured by the finite 

number of control structures present in a program [5].  

    The first step in behavior extraction is to transform 

any spaghetti logic in the input program into structured 

form, to create a hierarchy of nested and sequenced 

control structures. The behavior of leaf node control 

structures is then computed with net effects propagated 

to the next level while local details of processing and 

data are left behind. These computations reveal new 

leaf nodes and the process repeats until all behavior 

has been computed.    

Behavior computation for sequence and alternation 

structures involves composition and case analysis. 

Because no comprehensive theory for loop behavior 

computation can exist, mathematical foundations and 

engineering implementations short of a general theory 

but sufficient for practical use has been developed for 

use in FX [8].  

The general form of the expressions produced by 

function extraction is a set of conditional concurrent 

assignments (CCA) organized into behavior databases 

that define program behavior in all circumstances of 

use. The CCAs are disjoint and thus partition behavior 

on the input domain of a program. The behavior data-

bases define behavior in non-procedural form and 

represent the as-built specification of a program. Each 

CCA is composed of a predicate on the input domain, 

which, if true, results in simultaneous assignment of all 

right-hand side domain values in the concurrent as-

signments to their left-hand side range variables. The 

left side of Figure 1 shows a program that swaps two 

variables, x and y; the right side shows the behavior of 

the program as a conditional concurrent assignments.  

Note that there are many algorithm alternatives that 

one might choose for doing the swap but all would 

result in the same extraction. 

Behavior databases, thus, are the central repository 

for the actual behaviors contained in a software sys-

tem.  The behavior databases can be queried, for ex-

ample, for particular behavior cases of interest, or to 

determine if any cases satisfy, or violate, specified 

conditions or constraints. Behavior databases have 

many uses ranging from basic human understanding of 

code, to program correctness verification, to analysis 

of security and other attributes, to component compo-

sition, and so on [3].  

The first application of FX technology is to pro-

grams written in, or compiled into, Intel assembly lan-

guage to support analysts in malicious code detection 

and understanding of malware behaviors. Sample out-

puts from the evolving FX system are employed later 

in the paper to illustrate the role of behavior computa-
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tion as a means to understanding and verifying pro-

grams. 

 

 

              Figure 1: Swap program and extraction 

 

4.  Function Extraction Examples 

      In the example shown in Figure 2, the assembler 

source code for a short program is shown.  It contains 

statements such as push and pop, add, subtract, and 

jump.  The code contains spaghetti logic with various 

jumps throughout.  A code analyst would need to ma-

nually trace through the statements to determine the 

program behavior.  Using the FX system, however, the 

analyst is able to determine the behavior of this se-

quence with the push of a button. 

 

    1 //begin sequence 

    2 top: 
    3 :    // sequence function 

    4 :    push eax  
    5 :    push ebx  
    6 :    add esp, 0x00000004  
    7 :    (jmp 0x0000001E)  
    8 :    pop eax  
    9 :    (jmp $-0x14)   
   10 :    sub eax, ebx  
   11 :    add ebx, eax  
   12 :    push ecx  
   13 :    sub ecx, ecx  
   14 :    sub ecx, eax  
   15 :    add ecx, ebx 
   16 :    sub eax, eax  
   17 :    add eax, ecx  
   18 :    clc  
   19 :    pop ecx  
   20 :    (jmp $-0x12)  
   21 :    (ret)   
   22 :    label = exit 

Figure 2: Assembler source 

 
 Figure 3 shows the FX Code/Behavior display.  

The left side of the split pane shows the original as-

sembly language after transformation by the system 

into structured form.  It is revealed to be a simple se-

quence structure.  The jumps are shown in parentheses 

for traceability but they have been untangled and re-

moved from the sequence.  The right side of the split 

pane shows the automatically generated behavior data-

base for the code.  The equations are conditional con-

current assignments; the left hand sides represent final 

values at program exit while the right hand sides are 

initial values at program entry; all equations are as-

signed concurrently, not sequentially.   

    Note here that EAX register has been assigned the 

initial value of the EBX register and EBX has been 

assigned the initial value of the EAX register.  This 

code thus performs a swap of the two registers.  This 

program involves only a simple sequence control 

structure.  The FX system computes the functional 

behavior of every control structure in a program, the-

reby populating its behavior database with comprehen-

sive information about its behavior from low level 

structures up to the entire program.   

 

5.  Behavior Exploration with FX Technology 

 
The Code/Behavior display in FX allows the user 

to see the resulting behavior database for the whole 

program, as well as the behavior for each individual 

control structure or statement.  These behaviors are 

defined in terms of conditional concurrent assign-

ments. FXplorer allows the user to see behavior across 

statements, that is, the composition, or net effect, of 

accumulating behavior from one statement or structure 

to the next. This greatly assists a programmer in veri-

fying the execution of his programs. In essence, 

FXplorer allows user-controlled behavior exploration.  

The knowledge of program behavior gives new explo-

ratory power to programmers in the debugging phase 

of their development. 

The three FXplorer capabilities are called: 

 

• BehaviorCase  or Path Quest 

• BehaviorPath   or Connect the Dots 

• BehaviorHere  or Come Here 

 

By default, FX displays the whole program behavior 

database.  Using this display, the user might decide 

that one or more of the behaviors looks suspicious or 

erroneous. He might want to know which code state-

ments and their accumulating behaviors contribute to 

the case in question.  

   BehaviorCase, FXplorer’s “PathQuest” function, 

starts with a user-selected case in the behavior data-

base of a program.  It determines and displays the 

compositions of all the accumulating behavior along 

all the code paths that produce that case.  All other  
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   Figure 3: FX Code/Behavior View

code and behavior is eliminated. Thus, the program-

mer can find out what part of the original program is 

responsible for a given result. 

   BehaviorPath, or “Connect the Dots,” starts with a 

user-selected code path through the program.  It de-

termines and displays all the compositions of the ac-

cumulating behavior along that path. Thus, the pro-

grammer can examine a particular path through the 

program to see the accumulating and final behavior it 

causes. 

BehaviorHere, or FXplorer’s “Come Here” func-

tion, starts with a user-selected statement in the pro-

gram. It determines and displays the compositions of 

all the accumulating behaviors along all possible code 

paths to that statement. Thus, the programmer can find 

a particular point in a program and see all the paths 

and accumulating behaviors leading to that point. 

     These three functions provide a unique way of un-

derstanding a program. It allows direct answers to 

common programmer questions like: "Where does this 

result come from?" (BehaviorCase), "What happens if 

this path is executed?" (BehaviorPath), and "How does 

this program get here?" (BehaviorHere). The ability to 

answer these questions in full without doing a line-by-

line analysis greatly improves the programmer’s ability 

to understand program behavior, to verify that the re-

sults are correct, and to validate the results against a 

specification. 

 

 

6. Exploring the User Interface 
 

    Glance ahead to Figure 5 for a moment to see the 

basic structure of the FXplorer interface; FXplorer 

provides a tabular view of program behavior where the 

rows are program statements and the columns are reg-

isters, flags, and memory values.  FX also displays 

external items such as file system values but those will 

not be discussed in this context.  Think of the tabular 

view as a checkbook register.  Each statement is an 

entry in the register; the dark shaded lines labeled “af-

ter composition” are the “balance”, if you will, result-

ing after each statement.  The first two rows of this 

table represent the behavior database, or all behaviors, 

for the program as a whole. 

Now let’s look at the accumulation of behavior. 

For statement 1, note that 1 is added to the value of 

EAX.  The darker line below statement 1 shows the 

behavior afterwards.  

    Statement 2 then adds 20 to EBX and the following   

line shows the accumulated behavior after both state-

ments 1 and 2 

Finally, Statement 3 adds 6 to EAX and the follow-

ing composition line shows the accumulated behavior 

after statements 1, 2, and 3. 
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The tabular view allows the user to resize and 

move columns as desired.  Resizing is done by drag-

ging the title area of the column header.  Moving a 

column is done by simply dragging the column to a 

new location in the table.  This allows the user to place 

columns of interest in proximity to each other. If the 

content of a cell in the table is too long to be displayed 

without increasing the column width to an unreasona-

ble size, the cell can be clicked on and the contents 

will be displayed in the top area of the table. 

Using this example, let’s suppose a user starts by 

viewing the whole program behavior database com-

puted by FX as shown in Figure 4 and finds Case 1 to 

be of particular interest; that is, when EAX has been 

incremented by 7 and EBX by 25.  

    Using FXplorer, when the user right clicks any-

where on the row with that case, a drop down menu is 

displayed showing all pathways through the code that 

will result in this behavior.  The sequence of statement 

numbers is displayed on the menu.  In this case, there 

is only one pathway that results in this behavior. This 

is illustrated in Figure 4. 

     By clicking on the path dropdown menu, FXplor-

er“Path Quest” displays the statement sequence and       

 

 

 

 

the composition of accumulated behavior that produc-

es the behavior defined in the selected case.  The ac-

cumulated behavior sequence is illustrated in Figure 5. 

     Sometimes, however, a user might like to start ex-

ploration from a point other than the behavior data-

base.   Using “Come Here” in FXplorer allows a user 

to explore the program from the statement level.   

    For example, in Figure 6, clicking on statement 6 

shows the accumulated behavior to that point in the 

program, namely that EAX is incremented by 10 and 

EBX by 20.  In this case, only one path reaches state-

ment 6.  Contrast this with the result of a “Come Here” 

on statement 8, in Figure 7, where EAX is increment 

by 7 and EBX by 25.   
    While “Come Here” allows a user to explore beha-

vior to a given statement and “Path Quest” allows a 

user to explore starting from the behavior database, 

“Connect the Dots” gives a user control of exploration 

along a path of his choosing.  To activate path seletion, 

the user selects the “Path Selection” checkbox at the 

top of the tabular view.  A new column appears with 

radio buttons for every Then, Else, and Endif, as 

shown in Figure 8.  By default the Endif options are 

selected. From there the user can select the desired  

 

                                       Figure 4: PathQuest Drop-down menu showing statement sequence 
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Figure 5: Highlighted Accumulated Behavior Sequence 

 

  

 
Figure 6: Come-here on statement 6 
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Figure 7: Come-here on statement 8 

 
 

pathway through the program.  Now, selecting state-

ment in column 1 will show the result along the speci-

fied “Connect the Dots” path up to the selected state-

ment. Clicking the Compose along selected path but-

ton at the top will compose the accumulating behavior 

using the connected path.   

   Figure 9 shows a more substantial program example 

using FXplorer.  Imagine a program in an embedded 

avionics system that sets register EAX to the value of 

an angle for use in a tangent computation by the  in-

voking program. It is important that the angle not be 

90 degrees, since the tangent of 90 is infinite. This 

example is intentionally programmed in an obscure 

manner to simulate the difficulty of understanding a 

much larger program. 

Note that the computed behavior shows three cases 

that set EAX to 90, 96, and 88 degrees, respectively.  

The 90-degree case is of immediate interest because of 

the problem it creates for the tangent computation. 

Nowhere in the initial code is it apparent that is EAX 

explicitly set to 90, or to any other value for that mat-

ter (Figure 10 contains source listing). 

If the user wanted to explore the pathway that re-

sults in this behavior, he can right click on the row in 

the behavior database showing the behavior of interest, 

that is, the 90 degree case, and see the resulting se-

quence of statement numbers in the path. Selecting the 

sequence will then display the composition of accumu-

lating behavior along that path. Figure 11 shows the 

resulting accumulated behavior. Note that we can now 

see exactly the point at which EAX becomes 90, that 

is, at statement 47.  

   In looking at these examples, it is important to note 

that no current software engineering tool can provide 

these capabilities because no current tool has com-

puted behavior available to it. 

FXplorer provides powerful understanding and de-

bugging information for software development, acqui-

sition, testing, and verification.  But Fxplorer is only 

the first of an extensive suite of value-added applica-

tions that can be built around calculated software be-

havior. 

The next section briefly discusses the algorithm for 

calculating all the pathways through a given program.

             

 
           Figure 8: Connect-the-Dots User-controlled exploration 
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        Figure 9: FXplorer on Aviation Program Extraction 

 

                 
               Figure 10: Aviation Structured Source Code 
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             Figure 11: Accumulated Behavior 

 
 

 

7. FXplorer All Paths Algorithm 

    We can consider the various blocks of code as 

black boxes for the purpose of finding all the 

possible paths through the code. The only case 

of interest for this algorithm involves handling 

IF statements. Thus, for a simple sequence of code: 

 

GIVEN: (a b c) 

(a b c) 

 

When there is an IF statement we need to return 

the code sequence for the true case and the code 

sequence for the false case: 

 

GIVEN: (a b c (if d e)) 

(a b c d) 

(a b c e) 

 

The IF statement can occur anywhere, including the 

first statement of the code sequence: 

 

GIVEN: ((if a b) c) 

(a c) 

(b c) 

 

It can even be the only statement in the code: 

 

GIVEN: ((if a b)) 

(a) 

(b) 

 

Or, in general, the IF statements can be nested 

within other if statements: 

 

GIVEN: (a b (if d e) (if (if i j) (if m n)) q) 

(a b d i q) 

(a b d j q) 

(a b d m q) 

(a b d n q) 

(a b e i q) 

(a b e j q) 

(a b e m q) 

(a b e n q) 

 

So we need a recursive algorithm that walks the code 

blocks looking for IF statements. When one is found 

we construct two sequences, one sequence containing 

the TRUE case and one sequence containing the 

FALSE case. Within each case we need to recursively 

search for further IF statements. 
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8. Impact and Direction 

  FX gives software developers a practical means to 

determine the full functional behavior of programs. 

FXplorer adds three radically new abilities built on the 

FX knowledge of program behavior.  

 

BehaviorCase  or Path Quest answers the question 

“What parts of the program are responsible for this 

part of the final program behavior?” 

BehaviorPath   or Connect the Dots answers the ques-

tion “What is the result of following this path?” 

BehaviorHere  or Come Here answers the question 

“What parts of the program are involved in reaching 

this point?” 

   Since FX covers all of the behavior of a program we 

need not worry that some special case has been over-

looked.  FXplorer is an example of a new generation 

of software engineering automation that can capitalize 

on computed behavior to amplify human capabilities 

for program understanding and verification against 

specifications.  As an emerging discipline, FX tech-

nology holds promise for engineering correct pro-

grams, and FXplorer provides a powerful illustration 

of how computed behavior can be leveraged to create 

new engineering capabilities. 
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